At present, AI is mainly supervised learning, supervised training requires tagged data, so the quality and accuracy of data and output results are closely related.
Backpropagation, through supervised learning, identifies an error in the input-to-output mapping, and then adjusts the weights accordingly(with a learning rate) to correct this error.
简而言之,它指出没有任何一种算法能够适用每一个问题,而且它对于监督式学习(即预测性建模)尤其重要。
In a nutshell, it states that no one algorithm works best for every problem, and it's especially relevant for supervised learning(i.e. predictive modeling).
English
Bahasa indonesia
日本語
عربى
Български
বাংলা
Český
Dansk
Deutsch
Ελληνικά
Español
Suomi
Français
עִברִית
हिंदी
Hrvatski
Magyar
Italiano
Қазақ
한국어
മലയാളം
मराठी
Bahasa malay
Nederlands
Norsk
Polski
Português
Română
Русский
Slovenský
Slovenski
Српски
Svenska
தமிழ்
తెలుగు
ไทย
Tagalog
Turkce
Українська
اردو
Tiếng việt