A deep neural network has more than two hidden layers. So she's giving the job to a deep neural network . 研究员接下来使用一个深度神经网络 (VGG-Face)创建特征。 The researchers then used a deep neural network (VGG-Face) to create features. 多伦多大学的AlexKrizhevsky创建了一个深度神经网络 ,能够从一百万个样本中自动学习识别图像。 Alex Krizhevsky of the University of Toronto created a deep neural network that automatically learned to recognize images from 1 million examples. 研究人员利用37236个头部CT图像,来训练一个深度神经网络 ,让其识别图像中是否包含关键或非关键的发现。 Researchers used 37,236 head CT scans to train a deep neural network to identify whether an image contained critical or non-critical findings.
一个深度神经网络 可能有10到20个隐含层,而一个典型的神经网络可能只有几层。A deep neural network might have 10 to 20 hidden layers, whereas a typical neural network may have only a few. 一家无人机公司最近也描述了一个深度神经网络 ,可以在复杂的真实环境中自动操作无人机。 A drone company recently described a deep neural network that autonomously flies drones in complex real-world environments. 研究人员利用37236个头部CT图像,来训练一个深度神经网络 ,让其识别图像中是否包含关键或非关键的发现。 Oermann and colleagues used 37,236 head CT scans to train a deep neural network to identify if an image contained critical findings. AlphaGo通过训练一个深度神经网络 来预测棋局位置的值,利用数百万场过去的比赛作为训练数据。 AlphaGo worked by training a deep neural network to predict the value of board positions, using millions of past games as training data. 研究人员利用37236个头部CT图像,来训练一个深度神经网络 ,让其识别图像中是否包含关键或非关键的发现。 Utilizing 37,236 head CT scans, researchers trained a deep neural network to identify if an image consisted of critical or non-critical findings. 本周,你将建立一个深度神经网络 ,你想要多少层就有多少层!! This week, you will build a deep neural network , with as many layers as you want! 图2:给定位置周围的区域会被栅格化(rasterized),然后被传递给一个深度神经网络 。 Figure 2: The area surrounding a given location is rasterized and passed to a deep neural network . 最后,但不是不重要,硬件需求对于运行一个深度神经网络 模型是至关重要的。 Last but not the least, hardware requirements are essential for running a deep neural network model. 正如可以从论文的题目中推测出来的那样,涉及的回归模型是一个深度神经网络 )。 (As you can probably infer from the title of the paper, the regression model in question was a deep neural network .). 正如你可能从本文的标题推断的,解决这个问题的回归模型是一个深度神经网络 ). (As you can probably infer from the title of the paper, the regression model in question was a deep neural network .). 但是,要进行学习,一个深度神经网络 需要做的不仅仅是在各层神经网络中传递信息。 To learn, however, a deep neural net needed to do more than just send messages up through the layers in this fashion. 当然,在数学的角度上,你可以找出来哪一个深度神经网络 节点被激活了。 Indeed, mathematically, you can find out which nodes of a deep neural network were activated. 一个深度神经网络 在“学习”过数以千计的狗的照片后,能像人一样准确地识别出从未见过的照片中的狗。After a deep neural network has“learned” from thousands of sample dog photos, it can identify dogs in new photos as accurately as people can. 不同的一点是,今年我们使用Deepnet,这是一个深度神经网络 ,而不是去年使用的集成模型(ensembles)。 For a change, this year we will use deepnets, BigML deep neural networks , instead of the ensembles that we used last year. 例如,一个「深度」神经网络 GoogLeNet使用22个图层和数百万个参数将图像分类为1000个不同的类别。 For example GoogLeNet, a“deep” neural network , uses 22 layers with millions of parameters to classify images into 1000 distinct categories.'.
Display more examples
Results: 20 ,
Time: 0.0187