For data science and machine learning, developers typically use NumPy, Pandas, Matplotlib, with machine learning-specific libraries such as scikit-learn, TensorFlow and Keras also being popular.
Pandas is a Python package providing fast, flexible, and expressive data structures designed to make working with"relational" or"labeled" data both easy and intuitive.
The Pandas data manipulation library builds on NumPy, but instead of the arrays, it makes use of two other fundamental data structures: Series and DataFrames.
If you are considering learning one of these frameworks and have Python, numpy, pandas, sklearn, and matplotlib skills, I suggest you start with Keras.
If you're just getting started, focus on something that lets you build your Python skills, and that introduces you to Jupyter notebooks, scikit-learn, and pandas.
中文
Bahasa indonesia
日本語
عربى
Български
বাংলা
Český
Dansk
Deutsch
Ελληνικά
Español
Suomi
Français
עִברִית
हिंदी
Hrvatski
Magyar
Italiano
Қазақ
한국어
മലയാളം
मराठी
Bahasa malay
Nederlands
Norsk
Polski
Português
Română
Русский
Slovenský
Slovenski
Српски
Svenska
தமிழ்
తెలుగు
ไทย
Tagalog
Turkce
Українська
اردو
Tiếng việt