MATHRM in English translation

ce
masehi
mathrm
m

Examples of using Mathrm in Indonesian and their translations into English

{-}
  • Colloquial category close
  • Ecclesiastic category close
  • Computer category close
  • Ecclesiastic category close
Konstanta kesetimbangan dapat dikaitkan dengan energi bebas Gibbs standar untuk reaksi dengan persamaan Δ r G- R T ln K e q{\ displaystyle\ Delta_{ r} G{\ ominus}=- RT\ ln K_{\ mathrm{ eq}}} Dimana R adalah tetapan gas ideal dan T adalah suhu.
The equilibrium constant can be related to the standard Gibbs free energy change for the reaction by the equation Δ r G⊖- R T ln⁡ K e q{\displaystyle\Delta_{r}G^{\ominus}=-RT\ln K_{\mathrm{eq}}} where R is the universal gas constant and T the temperature.
W C F d s{\ displaystyle W=\ int_{ C}\ mathbf{ F}\ cdot\ mathrm{ d}\ mathbf{ s}}
W∫ C F⋅ d s{\displaystyle W=\int_{C}\mathbf{F}\cdot\mathrm{d}\mathbf{s}} This says that the work( W{\displaystyle W}) is equal to
Untuk sebuah botol bir yang tinggi botolnya tak terhingga, energi potensial gravitasi dirumuskan H g r a v m b g z,{\ displaystyle H{\ mathrm{ grav}}= m_{\ rm{ b}} gz\,,} dengan z adalah ketinggian gumpalan protein dalam botol dan g adalah percepatan gravitasi.
For an infinitely tall bottle of beer, the gravitational potential energy is given by H g r a v m b g z{\displaystyle H^{\mathrm{grav}}=m_{\rm{b}}gz\,} where z is the height of the protein clump in the bottle and g is the acceleration due to gravity.
x.{\ displaystyle\ chi_{\ mathrm{ top}}( x,
y) x.{\displaystyle\chi_{\mathrm{top}}(x, y)=x.\,}
Untuk kasus ini, perubahan energi dalam pada sistem tertutup dinyatakan dengan d E δ Q+ δ W{\ displaystyle\ mathrm{ d} E=\ delta Q+\ delta W}
For these cases the change in internal energy of a closed system is expressed in a general form by d E δ Q+ δ W{\displaystyle\mathrm{d} E=\delta Q+\delta W}
Energi kinetik Ek dari partikel bermassa m yang bergerak dengan kelajuan v adalah E k 1 2 m v 2.{\ displaystyle E_{\ mathrm{ k}}={\ tfrac{ 1}{ 2}} mv{ 2}\,.} Untuk objek yang terdiri dari banyak partikel, energi kinetik dari
The kinetic energy Ek of a particle of mass m travelling at speed v is given by E k 1 2 m v 2.{\displaystyle E_{\mathrm{k}}={\tfrac{ 1}{ 2}}
Dari hukum termodinamika pertama dalam sistem yang tertutup, diperoleh rumus: d U δ Q+ δ W,{\ displaystyle\ mathrm{ d} U=\ delta Q\+\ delta W,}
The first law of thermodynamics in a closed system provides d U δ Q+ δ W,{\displaystyle\mathrm{d} U=\delta Q\+\delta W,} where U{\displaystyle U}
terhadap{\ displaystyle}, konsentrasi substrat S. Rumus kinetika ini dituliskan sebagai v d d t V max K M+.{\ displaystyle v={\ frac{ d}{ dt}}={\ frac{ V_{\ max}{}}{ K_{\ mathrm{ M} Persamaan ini dikenal sebagai persamaan Michaelis-Menten.
the concentration of a substrate S. Its formula is given by v d d t V max K M+.{\displaystyle v={\frac{ d}{ dt}}={\ frac{V_{\max }{}}{K_{\mathrm{M} This equation is called the Michaelis-Menten equation.
girotron, atau magnetron bertegangan tinggi dirumuskan dengan f f c m 0 m 0+ T/ c 2,{\ displaystyle f= f_{\ mathrm{ c}}{\ frac{ m_{ 0}}{ m_{ 0}+ T/ c{ 2}}}\,,}
or high voltage magnetron is given by f f c m 0 m 0+ T/ c 2,{\displaystyle f=f_{\mathrm{c}}{\frac{ m_{ 0}}{ m_{ 0}+ T/ c^{ 2}}}\,,}
v d r d t{\ displaystyle\ mathbf{ v}={\ mathrm{ d}\ mathbf{ r}\ over\ mathrm{ d} t}\,\!
of position with time, is defined as the derivative of the position with respect to time: v d r d t{\displaystyle\mathbf{v}={\mathrm{d}\mathbf{r}\over\mathrm{d} t}\,\!
K κ 1 κ 2.{\ displaystyle\ mathrm{ K}=\ kappa_{ 1}\ kappa_{ 2}.}
K κ 1 κ 2.{\displaystyle\mathrm{K}=\kappa_{1}\kappa_{2}.} For example, a sphere of
Kita bisa memperlakukan dx{\ displaystyle\ mathrm{ d}
We may treat the dx{\displaystyle\mathrm{d} x}
Maka, F m d v d t m a,{\ displaystyle\ mathbf{ F}= m\,{\ frac{\ mathrm{ d}\ mathbf{ v}}{\ mathrm{ d}
Thus, F m d v d t m a,{\displaystyle\mathbf{F}=m\,{\frac{\mathrm{d}\mathbf{v}}{\mathrm{d} t}}=m\mathbf{a},} where F is the net force applied,
W C C F v d t C F d x,{\ displaystyle W_{ C}=\ int_{ C}\ mathbf{ F}\ cdot\ mathbf{ v}\,\ mathrm{ d}
a curve C is given by the line integral: W C∫ C F⋅ v d t∫ C F⋅ d x,{\displaystyle W_{C}=\int_{C}\mathbf{F}\cdot\mathbf{v}\,\mathrm{d} t=\int_{C}\mathbf{F}\cdot\mathrm{d}\mathbf{x},}
R g a y a/ a r e a v o l u m e j u m l a h t e m p e r a t u r{\ displaystyle R={\ frac{\ mathrm{ gaya/ area}\ times\ mathrm{ volume}}{\ mathrm{ jumlah}\ times\ mathrm{ temperatur}}}} Luas dan volume kira-kira adalah( panjang) 2 dan( panjang) 3.
force per unit area, the gas equation can also be written as: R f o r c e a r e a× v o l u m e a m o u n t× t e m p e r a t u r e{\displaystyle R={\frac{{\dfrac{\mathrm{force}}{\mathrm{area}}}\times\mathrm{volume}}{\mathrm{amount}\times\mathrm{temperature}}}} Area and volume are(length)2 and(length)3 respectively.
α μ A+ β μ B σ μ S+ τ μ T{\ displaystyle\ alpha\ mu_{\ mathrm{ A}}+\ beta\ mu_{\ mathrm{ B}}=\ sigma\ mu_{\ mathrm{ S}}+\ tau\ mu_{\ mathrm{ T}}\,} where μ Dalam hal ini adalah energi Gibbs molar parsial, sebuah potensial kimia.
energies of the products. α μ A+ β μ B σ μ S+ τ μ T{\displaystyle\alpha\mu_{\mathrm{A}}+\beta\mu_{\mathrm{B}}=\sigma\mu_{\mathrm{S}}+\tau\mu_{\mathrm{T}}\,} where μ is in this case a partial molar Gibbs energy, a chemical potential.
dari suatu zat B dalam suatu campuran ideal cairan atau suatu larutan ideal dinyatakan oleh μ B μ B+ R T ln x B{\ displaystyle\ mu_{\ mathrm{ B}}=\ mu_{\ mathrm{ B}}{\ ominus}+ RT\ ln x_{\ mathrm{ B}}\,} di mana μoB
of a substance B in an ideal mixture of liquids or an ideal solution is given by μ B μ B⊖+ R T ln⁡ x B{\displaystyle\mu_{\mathrm{B}}=\mu_{\mathrm{B}}^{\ominus}+RT\ln x_{\mathrm{B}}\,} where μo B is the chemical potential of a pure substance B{\displaystyle\mathrm{B}}
A+ B A B{\ displaystyle\ mathrm{ A+ B\ longrightarrow AB}}
A+ B⟶ AB{\displaystyle{\ce{A+ B-> AB}}} Another possibility is that only a
dua lainnya adalah panjang gelombang Compton dari elektron λ e{\ displaystyle\ lambda_{\ mathrm{ e}}} serta jari-jari elektron klasik r e{\ displaystyle r_{\ mathrm{ e.
the other two being the Compton wavelength of the electron λ e{\displaystyle\lambda_{\mathrm{e}}} and the classical electron radius r e{\displaystyle r_{\mathrm{e.
E p m 0 c 2,{\ displaystyle\ textstyle E_{\ mathrm{ p}}= m_{ 0}
E p m 0 c 2,{\displaystyle\textstyle E_{\mathrm{p}}= m_{ 0}
Results: 53, Time: 0.0222

Top dictionary queries

Indonesian - English