Приклади вживання Operatorname Англійська мовою та їх переклад на Українською
{-}
-
Colloquial
-
Ecclesiastic
-
Computer
d p d R= ρ v 2 R{\displaystyle{\frac{\operatorname{d} p}{\operatorname{d} R}}=\rho{\frac{ v^{ 2}}{ R}}} The left side of this equation
In general, the expected value operator is not multiplicative, i.e. E{\displaystyle\operatorname{E}} is not necessarily equal to E⋅ E{\displaystyle\operatorname{E}\cdot\operatorname{E}}.
Welcome! My name is operatorName.
My name is operatorName.
Here E{\displaystyle\operatorname{E}} is the expectedvalueoperator,
Here E{\displaystyle\operatorname{E}} is the expected value operator,
The one-rule program p← not p{\displaystyle p\leftarrow\operatorname{not} p} has no stable models.
nec( U)= 1{\displaystyle\operatorname{nec}(U)=1} means that U{\displaystyle U} is necessary.
The hyperbolic trig function sechx{\displaystyle\operatorname{sech}\, x}
p V= n R T= constant{\displaystyle pV=nRT=\operatorname{constant}}.
Further noting that X+ Y∼ Pois( λ+ μ){\displaystyle X+Y\sim\operatorname{Pois}(\lambda+\mu)}, and computing a lower bound on the unconditional probability gives the result.
E= p{\displaystyle\operatorname{E}\left={\boldsymbol{p}}} Let X{\displaystyle{\boldsymbol{X}}}
The hyperbolic trig function\operatorname{sech}\, x appears as one solution to the Korteweg-de Vries equation which describes the motion of a soliton wave in a canal.
not q{\displaystyle\operatorname{not} q} succeeds.
Y){\displaystyle\operatorname{I}(X;Y)} would then be 0.2141709)
AM≤ max{\displaystyle\operatorname{AM}\leq\max}, and reciprocal duality( min{\displaystyle\min}
Assume that E[ X]{\displaystyle\operatorname{E}[X]} is defined,
Michael Gelfond proposed to read not p{\displaystyle\operatorname{not} p} in the body
Y){\displaystyle\operatorname{I}(X;X)\geq\operatorname{I}(X;Y)}, and one can formulate the basic principle that a variable contains at least as much information about itself as any other variable can provide.
Operators a r g m i n{\displaystyle\operatorname{arg\, min}} and a r g m a x{\displaystyle\operatorname{arg\, max}} are sometimes also written as argmin{\displaystyle\operatorname{argmin}} and argmax{\displaystyle\operatorname{argmax}}, and stand for argument of the minimum and argument of the maximum.