Exploratory data analysis : where new features in the data are discovered.Why exploratory data analysis is a key preliminary step in data science. 探索性数据分析 是一种总结和直观呈现数据集重要特性的方法。Exploratory data analysis is an approach for summarizing and visualizing the important characteristics of a data set.您可以执行探索性数据分析 ,探明趋势,检验假设,并构建描述模型。 You can perform exploratory data analysis to spot trends, test assumptions and develop descriptive models.
可用作探索性数据分析 、链接分析、社交网络分析、生物网络分析等。 It provides exploratory data analysis , link analysis, social network analysis, biological network analysis, etc. 然后对数据进行清理,并应用转换使其可用来支持探索性数据分析 。 The data are then sanitized and transformations are applied to make them available to support exploratory data analysis . Orange的图形用户界面让用户能够专注于探索性数据分析 ,而不是编写代码。 Orange's graphical user interface enables users to focus on exploratory data analysis instead of coding. 一个探索性数据分析 生命周期的例子(每次遇到新数据集时需要做什么)。 An example exploratory data analysis lifecycle(what you will do every time you encounter a new dataset). 探索性数据分析 :这个单元分为两个部分--分布检查分布和关系检查。Exploratory Data Analysis : This unit is organized into two sections- Examining Distributions and Examining Relationships.探索性数据分析 提供了探索和分析大量流数据源的机制,以获得新的见解和决策。Exploratory data analysis provides mechanisms to explore and analyze massive streaming data sources to gain new insights and inform decisions.许多研究,尤其是进入一个全新的科学方向时,往往首选探索性数据分析 ;. Many studies, especially when going in completely new scientific directions, are exploratory by design ; 数据挖掘是机器学习中的一个研究领域,侧重于通过无监督学习进行探索性数据分析 。 Data mining is a field of study in machine learning and focuses on exploratory data analysis through unsupervised learning.数据挖掘是机器学习中的一个研究领域,侧重于通过无监督学习进行探索性数据分析 。 Data mining is a field of study within machine learning, focuses on exploratory data analysis through unsupervised learning.我写这篇文章是为了帮助你们了解可用于探索性数据分析 的各种免费工具。 I have written this article to help you acknowledge various free tools available for exploratory data analysis . 除此之外,如果你想要一个数据可视化和探索性数据分析 的框架--STDLib,你,值得拥有。 Furthermore, if you want a framework for data visualization and exploratory data analysis , you will find STDLib worthwhile. 彻底的探索性数据分析 (EDA,ExploratoryDataAnalysis)是必要的,这是为了确保收集数据和执行分析的完整性。 Thorough exploratory data analysis (EDA) is essential in order to ensure the integrity of your gathered data and performed analysis. . 我们的研究结果来自于一次探索性数据分析 ,研究的是Facebook里「最后时刻」的自我审查,或者被过滤后写下的内容。 We report results from an exploratory analysis examining“last-minute” self-censorship, or content that is filtered after being written, on Facebook. PCA在统计学中很有用,特别是在分析探索性数据 时。 PCA is useful in statistics, specifically in analyzing exploratory data . Exploratory data analysis (EDA) is an exciting task.
Display more examples
Results: 186 ,
Time: 0.0189