INFTY in Italian translation

Examples of using Infty in English and their translations into Italian

{-}
  • Colloquial category close
  • Official category close
  • Medicine category close
  • Financial category close
  • Ecclesiastic category close
  • Ecclesiastic category close
  • Computer category close
  • Programming category close
  • Official/political category close
On the other hand, for random inputs with nonzero mean the condition number asymptotes to a finite constant as n→∞{\displaystyle n\to\infty.
D'altra parte, per input casuali con media non nulla il numero di condizionamento tende a una costante finita per n→∞{\displaystyle n\to\infty.
k k!{\displaystyle\sum_{k=0}^{\infty}(-1)^{k}k!} is a divergent series, first considered by Euler.
k k!{\displaystyle\sum_{k=0}^{\infty}(-1)^{k}k!} fu considerata per la prima volta da Eulero, che applicò i metodi di sommabilità per assegnare un valore finito a questa serie.
x n|,{\displaystyle\|x\|_{\infty}=\sup_{ n}|
x n|{\displaystyle\|x\|_{\infty}=\sup_{ n}|
It will now be verified the relation E⊂⋃ n 0+∞ E n{\displaystyle E\subset\bigcup_{n=0}^{+\infty}E_{n}} hence(2.1) will be proved.
Si verificherà ora che vale anche la relazione E⊂⋃ n 0+∞ E n{\displaystyle E\subset\bigcup_{n=0}^{+\infty}E_{n}} per cui resterà provata la 2.1.
x n|{\displaystyle\|x\|_{\infty}=\sup_{ n}|
x n|{\displaystyle\|x\|_{\infty}=\sup_{ n}|
Formally, the conjecture states that if∑ n∈ A 1 n∞{\displaystyle\sum_{n\in A}{\frac{1}{n}}=\infty} then A contains arithmetic progressions of any given length.
Formalmente, se∑ n∈ A 1 n∞{\displaystyle\sum_{n\in A}{\frac{1}{n}}=\infty} allora A contiene progressioni aritmetiche di ogni lunghezza data.
of the key space, we have U∞{\displaystyle U=\infty}, which is consistent with the one-time pad being unbreakable.
si ha U∞{\displaystyle U=\infty}, che è coerente con l'assunto che uno schema one-time-pad sia teoricamente inviolabile.
Functions in W m,∞{\displaystyle W^{m,\infty}} have all derivatives of order less than m continuous,
Funzioni in W l,∞{\displaystyle W^{l,\infty}} hanno tutte le derivate di ordine minore di l{\displaystyle l}
y)=\infty} if there is no path of finite length from x{\displaystyle x}
y)=\infty} se non c'è nessun cammino di lunghezza finita da x{\displaystyle x}
ω|→∞{\displaystyle|\omega|\rightarrow\infty.
ω|→∞{\displaystyle|\omega|\rightarrow\infty.
to∞{\displaystyle\scriptstyle\infty.
a∞{\displaystyle\infty.
1∞ κ n n! t n{\displaystyle f(t)=\sum_{n=1}^{\infty}{\frac{\kappa_{n}}{n!}}t^{n}} be the(formal) cumulant-generating function.
t n{\displaystyle f(t):=\sum_{n=1}^{\infty}{\frac{\kappa_{n}}{n!}}t^{n}} la funzione generatrice dei cumulanti formalie.
n.{\displaystyle e^{x}=\lim_{n\to\infty}\left(1+{\frac{ x}{ n}}\ right)^{ n}.} 2.
n.{\displaystyle e^{x}=\lim_{n\to\infty}\left(1+{\frac{ x}{ n}}\ right)^{ n}.} 2.
x‖ 0{\displaystyle\lim_{t\to \infty }\|T(t)x\|=0.
x‖ 0{\displaystyle\lim_{t\to \infty }\|T(t)x\|=0.
Consider the geometric series A( z)∑ k 0∞ z k,{\displaystyle A(z)=\sum_{k=0}^{\infty}z^{k},} which converges(in the standard sense)
Si considera la serie geometrica A( z)∑ k 0∞ z k,{\displaystyle A(z)=\sum_{k=0}^{\infty}z^{k},} che converge(nel senso standard)
That is, it is the sum∑∑′ n 1∞ 1 n{\displaystyle{\sideset{}{'}\sum_{n=1}^{\infty}}{\frac{1}{n}}} where the prime indicates that n takes only values whose decimal expansion has no nines.
Cioè, è la somma∑∑′ n 1∞ 1 n{\displaystyle{\sideset{}{'}\sum_{n=1}^{\infty}}{\frac{1}{n}}} dove l'apice indica che n{\displaystyle n} assume solo i valori la cui espansione decimale non contiene dei 9{\displaystyle 9.
n s{\displaystyle{\frac{1}{\zeta(s)}}=\sum_{n=1}^{\infty}{\frac{\mu( n)}{ n^{ s}}}}
n s{\displaystyle{\frac{1}{\zeta(s)}}=\sum_{n=1}^{\infty}{\frac{\mu( n)}{ n^{ s}}}}
1/ n){\displaystyle\sigma(\beta)=\lim_{n\to\infty}(| x_{ n}|^{ 1/n})\,}
1/ n){\displaystyle\sigma(\beta)=\lim_{n\to\infty}(| x_{ n}|^{ 1/n})}
n{\displaystyle\sum_{n=-\infty}^{\infty} a_{ n}( z-c)^{ n}}
n{\displaystyle\sum_{n=-\infty}^{+\infty} a_{ n}( z-c)^{ n}}
n s{\displaystyle g(s)=\sum_{n=1}^{\infty}{\frac{ a( n)}{ n^{ s}}}}
n s{\displaystyle g(s)=\sum_{n=1}^{\infty}{\frac{ a( n)}{ n^{ s}}}}
Results: 135, Time: 0.0197

Top dictionary queries

English - Italian