Примери за използване на Corresponding sides на Английски и техните преводи на Български
{-}
-
Colloquial
-
Official
-
Medicine
-
Ecclesiastic
-
Ecclesiastic
-
Computer
the ratios between corresponding sides is going to be constant.
Because we have a side, two corresponding sides are congruent,
the ratio between the corresponding sides are going to be equivalent.
Well we know from geometry that the ratio of corresponding sides of similar triangles are always going to be the same.
They must be similar triangles. or the ratio between the corresponding sides must be the same.
So we can see that if two sides are the same length, two corresponding sides are the same length
So, if all of these triangles are congruent to each other So the corresponding sides are equal.
And so we know that if they are congruent then their corresponding sides have to be congruent.
all of their corresponding features especially all of the corresponding sides are congruent.
They have mixed the A and the D together. x plus 2 over y plus 1 is not the same thing as A/D. We're not even using corresponding sides.
these are the corresponding sides, the ratios are equal.
that's because they are corresponding sides of congruent triangles.
AD is equal to CB and for the exact same reason: corresponding sides of congruent triangles.
the reason why is'cause they're corresponding sides of congruent triangles.
we could even say corresponding sides congruent.
some scaling factor times the length of XY, the corresponding sides.
it's tricky here because they aren't the same corresponding sides.
This proof is based on the proportionality of the sides of two similar triangles, that is, upon the fact that the ratio of any two corresponding sides of similar triangles is the same regardless of the size of the triangles.
The proof is based on the proportionality of two similar triangles, that is, upon the fact that the ratio of any two corresponding sides of similar triangles is the same regardless of the size of the triangles.