Examples of using Mathcal in English and their translations into Italian
{-}
-
Colloquial
-
Official
-
Medicine
-
Financial
-
Ecclesiastic
-
Ecclesiastic
-
Computer
-
Programming
-
Official/political
for all ϕ∈ S( R n){\displaystyle\phi\in{\mathcal{S}}\mathbb{R}^{n.
then the ring H( U){\displaystyle{\mathcal{H}}(U)} consisting of all holomorphic functions is an integral domain.
β V B d{\displaystyle\beta={\mathcal{V}}Bd} A Voigt filter is a Faraday filter with its magnetic field shifted to be perpendicular to the direction of the light and at 45° to the polarization of the polarized plates.
The Eulerian description, introduced by d'Alembert, focuses on the current configuration κ t( B){\displaystyle\kappa_{t}({\mathcal{B}})}, giving attention to what is occurring at a fixed point in space as time progresses,
d θ θ{\displaystyle G(s)={\mathcal{M}}\{g(\theta)\}=\int _{0}^{\infty}\theta^{s}g(\theta)\,{\frac{d\theta}{\theta}}} we set θ e-t
is a continuous positive linear map from K( X){\displaystyle{\mathcal{K}}(X)} to R. Positivity means that I(f)≥ 0 whenever f is a non-negative function.
S∫ t 1 t 2 L d t,{\displaystyle{\mathcal{S}}=\int_{ t_{ 1}}^{ t_{ 2}}
ω′- ω d ω′.{\displaystyle\chi(\omega)={1\over i\pi}{\mathcal{ P}}\!\!\!\ int\ limits_{-\ infty}^{\ infty}{\ chi(\ omega')\ over\ omega'-\ omega}\,
then I T( θ)≤ I X( θ){\displaystyle{\mathcal{ I}}_{ T}(\ theta)\leq{\mathcal{ I}}_{ X}(\ theta)}
F{ f}⋅ F{ g}{\displaystyle{\mathcal{ F}}\{ f* g\}={\ mathcal{ F{F}}\{f\}\cdot{\mathcal{F}}\{g\}}
is a subset of P( X)∖{∅}{\displaystyle{\mathcal{P}}(X)\setminus\{\emptyset\}}, where P( X){\displaystyle{\mathcal{P}}(X)}
det A|{\displaystyle f_{\mathbf {Y}}(y)={\frac{f_{\mathbf{X}}({\mathcal{ A}}^{ -1}( y-b))}{|\ det{\mathcal{A.
P){\displaystyle\scriptstyle(\Omega,{\mathcal{F}},\mathbb{P})} and let G⊂ F{\displaystyle\scriptstyle{\mathcal{G}}\,\subset\,{\mathcal{F}}} be a sub-σ-algebra.
Let H{\displaystyle{\mathcal{H}}} be a Hilbert space and B( H){\displaystyle B({\mathcal{H}})}
But as a union of topological spaces is a special case of a direct limit of topological spaces, the space K( X){\displaystyle{\mathcal{K}}(X)} can be equipped with the direct limit locally convex topology induced by the spaces K( X,
as follows: χ( ρ)( P{ e∫ γ A}){\displaystyle\chi^{(\rho)}\left({\mathcal{ P}}\ left\{ e^{\ int_{\gamma}
F( M)→ F( M){\displaystyle{\mathcal{L}}_{X}:{\mathcal{F}}(M)\rightarrow{\mathcal{F}}(M)} is a derivation on the algebra F( M){\displaystyle{\mathcal{F}}M.
Indeed, K( X){\displaystyle{\mathcal{K}}(X)} is the union of the spaces K( X,
S)\cong{\mathcal{T}}(X)} That is,
If F{\displaystyle{\mathcal{F}}} denotes the Fourier transform operator, then F{ f}{\displaystyle{\mathcal {F}}\{f\}} and F{ g}{\displaystyle{\mathcal{F}}\{g\}} are the Fourier transforms of f{\displaystyle f}